Hi All, I have the following data and I think swarming gives me bad parameters:
timestamp,number_of_transactions
datetime,float
T,
2015-10-10,188
2015-10-11,272
2015-10-12,257
2015-10-13,239
2015-10-14,277
2015-10-15,227
Swarm gives the following:
{ 'aggregationInfo': { 'days': 0,
'fields': [],
'hours': 0,
'microseconds': 0,
'milliseconds': 0,
'minutes': 0,
'months': 0,
'seconds': 0,
'weeks': 0,
'years': 0},
'model': 'CLA',
'modelParams': { 'anomalyParams': { u'anomalyCacheRecords': None,
u'autoDetectThreshold': None,
u'autoDetectWaitRecords': None},
'clParams': { 'alpha': 0.03283512472589326,
'regionName': 'SDRClassifierRegion',
'steps': '1',
'verbosity': 0},
'inferenceType': 'TemporalMultiStep',
'sensorParams': { 'encoders': { '_classifierInput': { 'classifierOnly': True,
'clipInput': True,
'fieldname': 'number_of_transactions',
'n': 190,
'name': '_classifierInput',
'type': 'AdaptiveScalarEncoder',
'w': 21},
u'number_of_transactions': { 'clipInput': True,
'fieldname': 'number_of_transactions',
'n': 45,
'name': 'number_of_transactions',
'type': 'AdaptiveScalarEncoder',
'w': 21},
u'timestamp_dayOfWeek': None,
u'timestamp_timeOfDay': { 'fieldname': 'timestamp',
'name': 'timestamp',
'timeOfDay': ( 21,
9.153762368506069),
'type': 'DateEncoder'},
u'timestamp_weekend': None},
'sensorAutoReset': None,
'verbosity': 0},
'spEnable': True,
'spParams': { 'columnCount': 2048,
'globalInhibition': 1,
'inputWidth': 0,
'maxBoost': 1.0,
'numActiveColumnsPerInhArea': 40,
'potentialPct': 0.8,
'seed': 1956,
'spVerbosity': 0,
'spatialImp': 'cpp',
'synPermActiveInc': 0.05,
'synPermConnected': 0.1,
'synPermInactiveDec': 0.08050806656161408},
'tpEnable': True,
'tpParams': { 'activationThreshold': 13,
'cellsPerColumn': 32,
'columnCount': 2048,
'globalDecay': 0.0,
'initialPerm': 0.21,
'inputWidth': 2048,
'maxAge': 0,
'maxSegmentsPerCell': 128,
'maxSynapsesPerSegment': 32,
'minThreshold': 10,
'newSynapseCount': 20,
'outputType': 'normal',
'pamLength': 2,
'permanenceDec': 0.1,
'permanenceInc': 0.1,
'seed': 1960,
'temporalImp': 'cpp',
'verbosity': 0},
'trainSPNetOnlyIfRequested': False},
'predictAheadTime': None,
'version': 1}
I feel like it doesn’t capture the seasonality of the sales date which spans across multiple years. Any advice on how to improve this model?
P.S. The weird thing it does it when I try to predict for the future dates outside of training dataset, it just repeats the values. Why does it do that?