Comparing NuPIC to other ML techniques

Here are a few links to papers and, in general, works (e.g. benchmarks) which attempt to compare HTM systems to other AI/ML approaches (SVM, deep learning, etc.), or that are useful for that purpose.

Evaluating Real-time Anomaly Detection Algorithms - the Numenta Anomaly Benchmark

Much of the world’s data is streaming, time-series data, where anomalies give significant information in critical situations; examples abound in domains such as finance, IT, security, medical, and energy. Yet detecting anomalies in streaming data is a difficult task, requiring detectors to process data in real-time, not batches, and learn while simultaneously making predictions. There are no benchmarks to adequately test and score the efficacy of real-time anomaly detectors. Here we propose the Numenta Anomaly Benchmark (NAB), which attempts to provide a controlled and repeatable environment of open-source tools to test and measure anomaly detection algorithms on streaming data. The perfect detector would detect all anomalies as soon as possible, trigger no false alarms, work with real-world time-series data across a variety of domains, and automatically adapt to changing statistics. Rewarding these characteristics is formalized in NAB, using a scoring algorithm designed for streaming data. NAB evaluates detectors on a benchmark dataset with labeled, real-world time-series data. We present these components, and give results and analyses for several open source, commercially-used algorithms. The goal for NAB is to provide a standard, open source framework with which the research community can compare and evaluate different algorithms for detecting anomalies in streaming data.

See also GitHub - numenta/NAB: The Numenta Anomaly Benchmark.

Continuous online sequence learning with an unsupervised neural network model

The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory is recently proposed as a theoretical framework for sequence learning in the cortex. In this paper, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variable-order temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average (ARIMA), feedforward neural networks: online sequential extreme learning machine (ELM), and recurrent neural networks: long short-term memory (LSTM) and echo-state networks (ESN), on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyper-parameters tuning. Therefore the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem, but is also applicable to a wide range of real-world problems such as discrete and continuous sequence prediction, anomaly detection, and sequence classification.

2 Likes