Hi,
I’m looking for tuning my network to perform anomaly detection.
I’d like to have a feedback on the parameters I set to understand if I made errors.
An abstract of my dataset with computed anomaly score with the following network:
{read=-1.6133} 1.0
{read=-1.4906} 1.0
{read=-1.4457} 1.0
{read=-1.614} 1.0
{read=-1.4786} 1.0
{read=-1.5172} 1.0
{read=-1.5228} 1.0
{read=-1.5103} 1.0
{read=-1.5214} 1.0
{read=-1.4453} 1.0
{read=-1.5975} 1.0
{read=-1.5169} 1.0
{read=-1.5388} 1.0
{read=-1.5082} 0.825
{read=-1.5004} 0.575
{read=-1.5275} 0.575
{read=-1.5414} 0.0
{read=-1.4983} 0.0
{read=-1.5007} 0.0
{read=-1.5892} 0.725
{read=-1.4596} 1.0
{read=-1.5368} 0.0
{read=-1.5171} 0.0
{read=-1.4069} 0.575
{read=-1.674} 1.0
{read=-1.3818} 1.0
{read=-1.4626} 0.575
{read=-1.5901} 1.0
{read=-1.3821} 1.0
{read=-1.6325} 0.725
{read=-1.4817} 1.0
{read=-1.5102} 0.0
{read=-1.6279} 0.725
{read=-1.4113} 1.0
{read=-1.5805} 0.725
{read=-1.5106} 1.0
{read=-1.5508} 0.0
{read=-1.5027} 0.0
{read=-1.4936} 0.0
{read=-1.5706} 0.725
{read=-1.5172} 0.575
{read=-1.5215} 0.0
{read=-1.4843} 0.0
{read=-1.6138} 0.725
{read=-1.4353} 0.575
{read=-1.5029} 1.0
{read=-1.5222} 0.0
{read=-1.4888} 0.0
{read=-1.614} 0.725
{read=-1.4927} 0.575
{read=-1.5226} 0.0
{read=-1.5221} 0.075
{read=-1.5485} 0.0
{read=-1.503} 0.0
{read=-1.5126} 0.0
{read=-1.4889} 0.0
{read=-1.5655} 0.725
{read=-1.4901} 0.575
{read=-1.4312} 0.575
{read=-1.6286} 1.0
{read=-1.4448} 0.575
{read=-1.5415} 1.0
{read=-1.4528} 0.575
{read=-1.5515} 1.0
{read=-1.6427} 0.725
{read=-1.4883} 0.575
{read=-1.5322} 0.0
{read=-1.5104} 0.0
{read=-1.5559} 0.0
{read=-1.4451} 0.575
{read=-1.5222} 1.0
{read=-1.5423} 0.0
{read=-1.5553} 0.0
{read=-1.5364} 0.0
{read=-1.504} 0.0
{read=-1.6713} 0.8
{read=-1.3651} 0.575
{read=-1.5949} 1.0
{read=-1.5317} 0.0
{read=-1.4043} 0.575
{read=-1.691} 1.0
{read=-1.3486} 0.85
{read=-1.5586} 1.0
{read=-1.6381} 0.725
{read=-1.4351} 0.575
{read=-1.5947} 1.0
{read=-1.5174} 0.0
{read=-1.4695} 0.0
{read=-1.6138} 0.725
{read=-1.4445} 0.575
{read=-1.5078} 0.875
{read=-1.5951} 0.55
{read=-1.4976} 0.575
{read=-1.5485} 0.0
{read=-1.5369} 0.0
{read=-1.5396} 0.0
{read=-1.5561} 0.0
{read=-1.522} 0.0
{read=-1.4624} 0.575
{read=-1.5562} 1.0
They are sensor readings so I have a read each 20ms.
While the parameters:
n = 64
w = 3
min = 0
max = 0
radius = 0
resolution = 0.1
periodic = FALSE
clip = null
forced = null
fieldType = float
encoderType = RandomDistributedScalarEncoder
GLOBAL_INHIBITION: true
COLUMN_DIMENSIONS: 2048
CELLS_PER_COLUMN: 32
NUM_ACTIVE_COLUMNS_PER_INH_AREA: 40
POTENTIAL_PCT: 0.8
SYN_PERM_CONNECTED: 0.2
SYN_PERM_ACTIVE_INC: 0.003
SYN_PERM_INACTIVE_DEC: 0.0005
MAX_BOOST: 1
MAX_NEW_SYNAPSE_COUNT: 20
INITIAL_PERMANENCE: 0.24
PERMANENCE_INCREMENT: 0.04
PERMANENCE_DECREMENT: 0.008
MIN_THRESHOLD: 13
ACTIVATION_THRESHOLD: 20
MAX_NEW_SYNAPSE_COUNT: 128
PREDICTED_SEGMENT_DECREMENT: 0.001
CLIP_INPUT: false
Honestly I set just some of these parameters because I have no enough experience and knowledge for everyone so I set most following network examples or advise from documentation.
Can I have a feedback about the network set and if in your opinion the anomaly scores are plausible?