@rhyolight Here’s the data: https://www.dropbox.com/s/0w5xfh7pp38y6la/lane_data.csv.7z?dl=0
I should also have mentioned that there will be at most 5 lines together (unless you’ve ever seen a road with 6 or more lanes in a single direction). I’m having trouble getting the multi encoder to work as an encoder, when I run the data through my model I get the following exception (this is using the version of nupic from the .whl file on ubuntu, not built from source):
File "/home/CSEM/mack0242/.local/lib/python2.7/site-packages/nupic/frameworks/opf/clamodel.py", line 748, in _handleCLAClassifierMultiStep
self._classifierInputEncoder = encoderList[self._predictedFieldIdx]
TypeError: list indices must be integers, not NoneType
My input looks like:
{'timestamp': datetime.datetime(2011, 12, 31, 23, 55),
'lanes': {'20': 3, '21': 0, '17': 6, '16': 4, '19': 13, '18': 8}}
The offending nupic code is here: https://github.com/numenta/nupic/blob/master/src/nupic/frameworks/opf/clamodel.py#L730-L734
Here’s my sensorParams
:
{
"sensorAutoReset": null,
"encoders": {
"lanes": {
"fieldname": "lanes",
"type": "MultiEncoder",
"encoderDescriptions": {
"20": {
"resolution": 0.8,
"fieldname": "20",
"name": "20",
"w": 21,
"type": "RandomDistributedScalarEncoder"
},
"21": {
"resolution": 0.8,
"fieldname": "21",
"name": "21",
"w": 21,
"type": "RandomDistributedScalarEncoder"
},
"17": {
"resolution": 0.8,
"fieldname": "17",
"name": "17",
"w": 21,
"type": "RandomDistributedScalarEncoder"
},
"16": {
"resolution": 0.8,
"fieldname": "16",
"name": "16",
"w": 21,
"type": "RandomDistributedScalarEncoder"
},
"19": {
"resolution": 0.8,
"fieldname": "19",
"name": "19",
"w": 21,
"type": "RandomDistributedScalarEncoder"
},
"18": {
"resolution": 0.8,
"fieldname": "18",
"name": "18",
"w": 21,
"type": "RandomDistributedScalarEncoder"
}
}
},
"timestamp_timeOfDay": {
"type": "DateEncoder",
"timeOfDay": [ 51, 9.49],
"fieldname": "timestamp",
"name": "timestamp_timeOfDay"
},
"timestamp_weekend": {
"weekend": [ 51, 9],
"fieldname": "timestamp",
"name": "timestamp_weekend",
"type": "DateEncoder"
}
},
"verbosity": 0
}
Additionally, has there been any progress on this issue: https://github.com/numenta/nupic/issues/1712 , because I think my problem is a case where multiple predicted fields would really shine.