How to get Anomaly Likelihood using anomaly_likelihood.updateAnomalyLikelihoods


Looking for some quick guidance on running the online version of the anomaly likelihood, using the ‘anomaly_likelihood.updateAnomalyLikelihoods’ function. In the source ( it says:

… code-block:: python
likelihoods, avgRecordList, estimatorParams = \
Whenever you get new data:
… code-block:: python
likelihoods, avgRecordList, estimatorParams = \
updateAnomalyLikelihoods(data2, estimatorParams)

My issue is that since the model hasn’t seen any data yet there is no history of anomaly scores to pass into updateAnomalyLikelihoods(). Here’s what I’m doing now:

dist = {'mean':0.5, 'name':'normal', 'variance':1e6, 'stdev':1e3}
estimatorParams = {
    "distribution": dist,
    "movingAverage": {
        "historicalValues": [],
        "total": 0,
        "windowSize": 1,
    "historicalLikelihoods": [],

likelihoods, avgRecordList, estimatorParams = anomaly_likelihood.estimateAnomalyLikelihoods(anomalyScores=[ [0,0,1.0] ],averagingWindow=1) 

I know the ‘anomalyScores’ argument to estimateAnomalyLikelihoods() consists of a timestamp, raw data value and raw anomaly score. Though since my data does not have a timestamp column I pass in the index value of 0, along with another 0 for the first raw data point and 1.0 for the first raw anomaly score.

Once the initial estimateAnomalyLikelihoods() has run I iterate over the data frame rows, with each new data point running:

AnomScore = resultObj.inferences["anomalyScore"]
likelihoods, avgRecordList, estimatorParams = anomaly_likelihood.updateAnomalyLikelihoods([ [index,row[field],AnomScore] ], estimatorParams)

if index%AnomLikl_obj.reestimationPeriod == 0:
    AScores = [ [v['index'], row[field],v['AScore']] for v in results ]. ##gather all raw anomaly     score so far##
    likelihoods, avgRecordList, estimatorParams = anomaly_likelihood.estimateAnomalyLikelihoods(
        anomalyScores=AScores[-AnomLikl_obj.historicWindowSize:], averagingWindow=1)

Notice anything wrong looking or missing in there? As of now it will run without error and output raw anomaly scores but no likelihoods. Thanks