Hi,
Here I’m again dealing with my initial question.
I created a model using a script with the complete model params schema, and I can see it into the metric table:
{
"completeModelParams": {
"valueFieldName": "c1",
"modelConfig": {
"aggregationInfo": {
"hours": 0,
"microseconds": 0,
"seconds": 0,
"fields": [],
"weeks": 0,
"months": 0,
"minutes": 0,
"days": 0,
"milliseconds": 0,
"years": 0
},
"model": "CLA",
"version": 1,
"predictAheadTime": "",
"modelParams": {
"sensorParams": {
"verbosity": 0,
"encoders": {
"c0_dayOfWeek": {
"dayOfWeek": [
21,
5.01
],
"fieldname": "c0",
"type": "DateEncoder",
"name": "c0"
},
"c0_timeOfDay": {
"fieldname": "c0",
"timeOfDay": [
512,
9.49122334747737
],
"type": "DateEncoder",
"name": "c0"
},
"c1": {
"type": "RandomDistributedScalarEncoder",
"seed": 42,
"fieldname": "c1",
"name": "c1",
"numBuckets": 130.0
},
"c0_weekend": ""
},
"sensorAutoReset": ""
},
"anomalyParams": {
"anomalyCacheRecords": "",
"autoDetectThreshold": "",
"autoDetectWaitRecords": 5030
},
"clEnable": "false",
"spParams": {
"columnCount": 102048,
"synPermInactiveDec": 0.0005,
"maxBoost": 1,
"spatialImp": "cpp",
"synPermConnected": 0.1,
"seed": 1956,
"numActiveColumnsPerInhArea": 40,
"globalInhibition": 1,
"inputWidth": 0,
"spVerbosity": 0,
"synPermActiveInc": 0.0015,
"potentialPct": 0.8
},
"trainSPNetOnlyIfRequested": "false",
"tpEnable": "true",
"clParams": {
"alpha": 0.035828933612158,
"clVerbosity": 0,
"steps": "1",
"regionName": "CLAClassifierRegion"
},
"inferenceType": "TemporalAnomaly",
"spEnable": "true",
"tpParams": {
"columnCount": 2048,
"activationThreshold": 13,
"pamLength": 3,
"cellsPerColumn": 32,
"permanenceInc": 0.1,
"minThreshold": 10,
"verbosity": 0,
"maxSynapsesPerSegment": 32,
"outputType": "normal",
"globalDecay": 0,
"initialPerm": 0.21,
"permanenceDec": 0.1,
"seed": 1960,
"maxAge": 0,
"newSynapseCount": 20,
"maxSegmentsPerCell": 128,
"temporalImp": "cpp",
"inputWidth": 2048
}
}
},
"timestampFieldName": "c0"
},
"datasource": "custom",
"metricSpec": {
"metric": "modelo2"
}
}
but, in the same table, the json values into the field model_params are differents to the previously defined model.
{"anomalyLikelihoodParams": null,
"inferenceArgs": {
"predictionSteps": [1],
"predictedField": "c1",
"inputPredictedField": "auto"},
"modelConfig": {
"aggregationInfo": {
"seconds": 0,
"fields": [],
"months": 0,
"days": 0,
"years": 0,
"hours": 0,
"microseconds": 0,
"weeks": 0,
"minutes": 0,
"milliseconds": 0
},
"model": "CLA",
"version": 1,
"predictAheadTime": null,
"modelParams": {
"sensorParams": {
"verbosity": 0,
"encoders": {
"c0_dayOfWeek": null,
"c0_timeOfDay": {
"fieldname": "c0",
"timeOfDay": [21, 9.49122334747737],
"type": "DateEncoder",
"name": "c0"},
"c1": {
"resolution": 160.3736842105263,
"seed": 42,
"fieldname": "c1",
"name": "c1",
"type": "RandomDistributedScalarEncoder"},
"c0_weekend": null},
"sensorAutoReset": null},
"clEnable": false,
"spParams": {
"columnCount": 2048,
"spVerbosity": 0,
"maxBoost": 1.0,
"spatialImp": "cpp",
"inputWidth": 0,
"synPermInactiveDec": 0.0005,
"synPermConnected": 0.1,
"synPermActiveInc": 0.0015,
"seed": 1956,
"numActiveColumnsPerInhArea": 40,
"globalInhibition": 1,
"potentialPct": 0.8},
"trainSPNetOnlyIfRequested": false,
"clParams": {
"alpha": 0.035828933612158,
"clVerbosity": 0,
"steps": "1",
"regionName": "CLAClassifierRegion"},
"tpParams": {
"columnCount": 2048,
"activationThreshold": 13,
"pamLength": 3,
"cellsPerColumn": 32,
"permanenceInc": 0.1,
"minThreshold": 10,
"verbosity": 0,
"maxSynapsesPerSegment": 32,
"outputType": "normal",
"globalDecay": 0.0,
"initialPerm": 0.21,
"permanenceDec": 0.1,
"seed": 1960,
"maxAge": 0,
"newSynapseCount": 20,
"maxSegmentsPerCell": 128,
"temporalImp": "cpp",
"inputWidth": 2048},
"anomalyParams": {
"anomalyCacheRecords": null,
"autoDetectThreshold": null,
"autoDetectWaitRecords": 5030},
"spEnable": true,
"inferenceType": "TemporalAnomaly",
"tpEnable": true}
},
"inputRecordSchema":
[["c0", "datetime", "T"],
["c1", "float", ""]]
}
Has it sense? Have I got a wrong concept?
Regards