So I’m running swarms on mostly 5-10 column data sets with one as the ‘predicted field’. Each time it chooses adaptive scalar encoders, and this time not including the predicted field ‘device_temp_c’.
('_classifierInput', ' -- ', {'classifierOnly': True, 'name': '_classifierInput', 'clipInput': True, 'n': 521, 'fieldname': 'device_temp_c', 'w': 21, 'type': 'AdaptiveScalarEncoder'})
(u'libversion', ' -- ', {'name': 'libversion', 'clipInput': True, 'n': 449, 'fieldname': 'libversion', 'w': 21, 'type': 'AdaptiveScalarEncoder'})
(u'write_amp', ' -- ', {'name': 'write_amp', 'clipInput': True, 'n': 370, 'fieldname': 'write_amp', 'w': 21, 'type': 'AdaptiveScalarEncoder'})
(u'device_temp_c', ' -- ', None)
When I set the predicted field to another aging-related metric, the one field that the swarm picks up is ‘device_temp_c’. This is the one variable that has fluctuating, kind of periodic behavior, so it makes sense that the swarm found it useful. The encoder it picked was an Adaptive Scalar with the w = n-1, which seems like.a sign of trouble. I though it would’ve picked a Scalar or RDSE, which makes me suspect a problem somewhere in the encoding process.
'sensorParams': {'encoders': {'_classifierInput': {'classifierOnly': True,
'clipInput': True,
'fieldname': 'media_wear_pct',
'n': 28,
'name': '_classifierInput',
'type': 'AdaptiveScalarEncoder',
'w': 21},
u'device_temp_c': {'clipInput': True,
'fieldname': 'device_temp_c',
'n': 22,
'name': 'device_temp_c',
'type': 'AdaptiveScalarEncoder',
'w': 21},
u'libversion': None,
u'media_wear_pct': None,
u'media_written_gb': None,
u'write_amp': None},
Does this seem troublesome?